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Wave functions and energies were calculated for the 2s, 3po , and 4d o states of the hydrogen atom 
using the Messmer and Rayleigh-Ritz variational methods with minimization of the second eigenvalue. 
The wave functions were linear expansions of Gaussian functions and both linear and exponential 
parameters were varied. Except for the two term expansions, calculated values of the energies and 
expectation values, ( r -  1), ( r )  and ( r  2) were within two percent of the true values for both methods. 

1. Introduction 

A variational method for obtaining the wave functions of excited states has 
been proposed recently by Messmer [1, 2]. He has stated that this method is free 
from the restriction that the excited state wave function must be orthogonal to all 
the true wave functions of states of the same symmetry and of lower energy. The 
basis of the method is a minimization of the quantity g2/A where e = E - W and 
A = ( ~ [ ( H  - E)21 ~ ) .  E = ( ~ I H I  ~ )  where H denotes the true Hamiltonian, W the 
true energy, and 4~ an approximate wave function for the excited state. 

Messmer has argued that minimization of gZ/A produces a wave function which 
is the best approximation to the true wave function for the system over the whole 
of configuration space, i. e., that the overlap between the true and approximate 
wave function is maximized. He has also suggested that a possible criterion for 
testing the validity of this contention is comparison of the values of the quantities 
( r -  1), ( r )  and (r2), computed from the approximate wave function, with known 
values for these quantities. 

The purpose of the work described here was to investigate the Messmer method 
as applied to a simple system. We chose to work with the hydrogen atom, using 
Gaussian-type functions of the form: 

~,.,. = ~. c i / e x p ( -  rh r2) Yl,m(O, if)) (1) 
i 

to approximate the 2s, 3po and 4d o states. The hydrogen atom seemed to be a 
reasonable system to study since it is simple and exact values for W, ( r - l ) ,  ( r )  
and ( r  2) are known. Moreover, there is at present, considerable interest in the 
use of Gaussian-type functions to approximate molecular wave functions. 
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2. Application of the Messmer Method 

Since the approximate wave functions (1) are not normalized, E and A must be 
defined so as to include the overlap integral. Therefore, 

E = ( H ) t ( S )  
and (2) 

a = < H 2 > / < S >  - E 2 , 

where ( H )  = (~b~, m [Hl~z,m), ( H  2) = <~,m I H21 ~,m> and <S) = <~,, ,  ]~,m)" The 
condition that e2/A be minimal, viz., 6(e2/d)= 0, gives 

2fie - (e/A) 6A = 0. (3) 
Now 

e = < H > / < S >  - w 

and 
= ( H 2 ) / ( S )  -- ( ( H ) / ( S ) )  ~ , 

therefore, for a given W we have 

fie = ~ < H ) / ( S )  - ( ( H ) / < S )  2) ~ ( S )  (4) 
and 

~ d  = ~ < H 2 > / < S >  - ( < H ~ > / < S >  2) ~ < S >  - 2 ( < H > / < S >  ~) ~ < H >  

+ 2(<H)a/<s)  a) ~ ( S ) .  (5) 

Substitution of (4) and (5) into (3) gives 

2 ~ < n )  - (E + W) F ( S )  - (e/)l) (F<H 2) - 2 E F ( H )  + E26<S)) = 0 (6) 

after rearrangement. 
To find the trial function which satisfies Eq. (6), the exponential parameters, t//, 

and the linear coefficients, % are varied in a nested fashion. The exponential para- 
meters are varied by a direct (pattern) search technique [3]. For  each set of values 
given for the t/i by the search routine, e2/A is minimized with respect to the % This 
latter process yields in each case, a set of linear equations of which the following 
is the ith member: 

cj {2Hij + 2Hji - (E + W)  (Sis + Ssl ) (7) 
S 

-- (e/A) [ n ~  + n s 2 - 2E(Hij + n j i )  + E2(Sis + S~i)]} = 0, 
where 

Hi s = <q~i,,.lHi ~b/,m) , 2 i e C~t,m>j His = <~91, m I H  I , 
i i ith Sij = (q~l,m I~bi, m) and qSz, m denotes the term in (1). If E were known, then the 

equations represented by (7) could be solved immediately as an eigenvalue problem 
of the form (A - (e/A) B) C = 0, or 

( B -  xa  - (e/d)  ~) C = 0 ,  (S) 

where the elements of the arrays A and B have the form 

Ai~ = 2Hij + 2Hji - (E + W) (Si~ + Sji), 

Bij = H~ + H j~ - 2E(HIj + H ii ) + EE(sij + Sji) 

and where C denotes the array of linear coefficients. 
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Since E is not known a priori, an iterative calculating procedure must be 
employed. For an initial trial E, (8) is solved for (e/A) and the array of coefficients C. 
The vector of coefficients corresponding to the second lowest eigenvalue (~/A) is 
selected from C. These coefficients are used to compute another value for E 
according to Eq. (2). This new E is then used to solve (8) again. The procedure just 
described is repeated until the trial E and the next calculated value of E are con- 
sistent, ez/A is then calculated. The exponential parameters are changed by the 

Table 1. Results obtained with the Messmer method 

E <~-*) (r) (r ~) 

2s orbital 
2 terms -0.1164 0.2451 6.141 44.68 
3 terms -0.1236 0.2493 5.993 41.73 
4 terms -0.1246 0.2502 5.966 41.19 

true -0.1250 0.2500 6.000 42.00 

3p0 orbital 
2 terms - 0 . 0 5 3 6 7  0.1094 12.59 183.9 
3 terms - 0 . 0 5 5 3 3  0.1108 12.46 177.9 
4 terms - 0 . 0 5 5 4 6  0.1111 12.43 176.6 

t r u e  - 0 . 0 5 5 5 6  0.1111 12.50 180.0 

4d o orbital 
2 terms - 0 . 0 3 0 5 8  0.06162 21.09 510.3 
3 terms - 0 . 0 3 1 1 8  0.06240 20.92 497.5 
4 terms -0 .03121  0.06244 20.90 496.3 

t r u e  - 0 . 0 3 1 2 5  0.06250 21.00 504.0 

search routine and the iterative procedure is repeated. This nested variation of the 
linear and non-linear parameters is continued until eZ/A attains a stationary value. 

The proceeding procedure was carried out using 2, 3 and 4 term expansions 
of the type given by Eq. (1) to describe each of the 2s, 3po and 4d o states of the 
hydrogen atom. The appropriate known true value for W was used in each case. 
The functions thus determined were used to calculate values for ( r - l ) ,  ( r )  and 
(r2).  The results are given in Table 1. 

The reason for choosing the second eigenvalue was to ensure that the ap- 
proximate wave function approached the true wave function for the excited state 
under consideration as eZ/A approached zero. Messmer points out that both e 2 
and A must approach zero as e2/A approaches zero if the approximate wave func- 
tion is to be reasonably close to the true wave function. Some calculations were 
done using the vector of coefficients associated with the lowest eigenvalue and 
these gave very poor wave functions. In this case e 2 can be made equal to zero, but 
A is not approaching zero in any reasonable manner; hence, the above criteria are 
not satisfied. These results emphasize the need for choosing the appropriate 
eigenvalue. 

8 Theoret. chim. Acta (BerI.) Vol. 24 
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3. Application of the Rayleigh-Ritz Method 

The results obtained with the Messmer method as outlined above, were 
compared with wave functions of the form (1), calculated from a modification of the 
Rayleigh-Ritz variational method. Variation of the linear and non-linear (ex- 
ponential) parameters was again carried out in a nested fashion. For each set of the 
exponential parameters given by the direct search routine, secular equations of the 
form 

(S- 1n  - El)  C = 0 (9) 

were solved for the eigenvalues, E, and the eigenvectors, C (H, S and I denote the 
Hamiltonian, Gram and identity matrices respectively). The exponential para- 
meters were varied and Eq. (9) was solved for each variation until a minimal second 
lowest eigenvalue was achieved. The vector of coefficients corresponding to the 
second eigenvalue was selected from C. The wave function thus determined was 
used to compute values for ( r - l> ,  (r> and (r2> which are reported in Table 2. 
The energy values obtained for the 2s state are identical to those reported by 
Reeves [-4] using a similar method and very similar expansions. 

Table 2. Results obtained with the Rayleigh-Ritz method 

E (r -1) (r) (r 2) 

2s orbital 

2 terms -0.1168 0.2340 6.355 47.68 
3 terms -0.1237 0.2479 6.016 42.04 
4 terms -0.1246 0.2491 5.982 41.41 

true -0.1250 0.2500 6.000 42.00 

3p0 orbital 

2 terms -0.05369 0.1074 12.82 190.8 
3 terms -0.05533 0.1104 12.49 178.6 
4 terms -0.05547 0.1108 12.45 177.1 

true -0.05556 0.1111 12.50 180.0 

4d0 orbital 

2 terms -0.03059 0.06116 21.29 520.4 
3 terms -0.03118 0.06236 20.94 498.6 
4 terms -0.03121 0.06242 20.92 496.9 

true -0.03125 0.06250 21.00 504.0 

4. Discussion and Conclusions 

The percentage deviation of the calculated value from the true value was 
determined in each case for ( r - l ) ,  ( r )  and (rZ). These values are recorded in 
Table 3. Examination of this table shows that the Messmer method, as described 
in Section 2, gives better results for the calculated quantities with the two term 
expansions than does the Rayleigh-Ritz method. Moreover, it yields better results 
for ( r - 1 )  with the three and four term expansions. However, on the whole the 
Rayleigh-Ritz method gives better results for ( r )  and (r2). Thus it would seem 
that the Messmer method yields wave functions which are better in the vicinity 
of the nucleus. This conclusion was confirmed by calculating the root mean square 
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Table 3, Percentage deviation of calculated values of ( r  1), ( r )  and ( r  2) from the true values using 
the Messmer and Rayleigh-Ritz wave functions 

(r -1) (r) (r 2) 
Messmer Rayleigh-Ritz Messmer Rayleigh-Rit z Messmer Rayleigh-Ritz 

2s orbital 

2 terms - 1.96 - 6.40 2.35 5.92 6.38 13.5 
3 terms -0 .28  - 0 . 8 4  -0 .12  0.27 -0 .64  0.10 
4 terms 0.08 - 0 . 3 6  -0 .57  - 0 . 3 0  - 1.93 - 1.40 

3po orbital 

2 terms - 1.53 - 3.33 0.72 2.56 2.17 6.00 
3 terms - 0 . 2 7  -0 .63  -0 .32  -0 .08  - 1.17 -0 .78  
4 terms 0.00 - 0.27 - 0.56 - 0.40 - 1.89 - 1.61 

4d o orbital 

2 terms - 1.41 - 2 . 1 4  0.43 1.38 1.25 3.25 
3 terms -0 .16  - 0 . 2 2  -0 .38  -0 .28  -1 .29  -1 .07  
4 terms - 0 . 1 0  -0 .13  -0 .48  -0 .38  -1 .53  - 1.41 

Table 4. Overlap of approximate with true wave function 

Rayleigh-Ritz Method Messmer Method 

2s orbital  

2 terms 0.992152 0.994997 
3 terms 0.999287 0.999324 
4 terms 0,999339 0.999322 

3po orbital 

2 terms 0.994861 0.996927 
3 terms 0.999256 0.999255 
4 terms 0.999174 0,999159 

4d 0 orbital 

2 terms 0.995887 0.997130 
3 terms 0.999196 0.999180 
4 terms 0.999117 0.999105 

deviation of the wave function from the true wave function in the vicinity of the 
nucleus. Again the Messmer method yielded a better wave function, indicating 
that the Messmer functions fit the true wave function better in the least squares 
sense in this region. 

Another criterion for assessing the goodness of the approximate wave func- 
tions is to calculate the overlap between the approximate and the true wave 
function. The results of such calculations are shown in Table 4. They show that 
the Messmer method gives significantly better wave functions only for the two 
term expansion. 

Except for the results obtained with the two term expansion, the Messmer 
method as we have applied it, does not seem to give significantly better wave 
functions compared to those obtained with the Rayleigh-Ritz method. In view 

8* 
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of the much greater amount  of effort required in using the Messmer method, as 
measured in terms of computer  time and preliminary mathematical  manipulation, 
there is some question in our minds as to its superiority over some modification 
of the established variational method. 

One possible approach is suggested by the method we used to obtain the 
excited states within the context of the Rayleigh-Ritz method. If a wave function 
is approximated by a linear combination of functions, then substitution of this 
approximation into the expression for the energy, followed by minimization of the 
energy with respect to the linear parameters,  leads to the familiar secular equation. 
If there are N linear terms, then there will be N solutions to the secular equation. 
It can be shown [5] that the k th lowest eigenvalue is an upper bound to the k th 
lowest state of the symmetry under consideration. Usually, the non-linear (ex- 
ponential) parameters  are varied so as to give the lowest possible value for the 
lowest eigenvalue. This leads to the best possible basis set of the given mathematical  
form for the lowest state. However,  it is unlikely that this will be a good basis set 
to represent the excited states. If the appropriate  eigenvalue is minimized with 
respect tO the non-linear parameters,  then it should produce the best basis set to 
represent the excited state. 

Our calculations show that this is true for the hydrogen atom. Hylleraas [61 
has carried out variational calculations of this type on the helium atom and ob- 
tained reasonable energies for the excited state. Recently, Bishop et al. [7, 81 have 
done calculations on some excited states of H 2 0  and NH3 using one-center 
multiconfigurational wave functions containing orthogonalized Slater type func- 
tions, They have minimized the appropriate  eigenvalue with respect to the ex- 
ponential parameters  for each state. They obtained the correct order for the states 
and the energy differences between the states were quit e reasonable. Moreover,  
the predicted nuclear geometries were consistent with the known experimental 
data. Some unpublished data of ours on the He atom indicate that the energies for 
the excited states are better than for the ground state to the same level of approxi- 
mation. We are continuing to explore this method of obtaining excited states. 
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